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ABSTR ACT

W. .p I con' ergcncc results arc obt ai1ned for stochastic recursi\ c

approximation algorithms under very general con dit Ions. Thc gain

sequence (an) can go to zero very S IowlIN and state-dependent noise,

discontinuous dynamical equations and the projected or cons tra inecd

algorithm arc all treated. The basic technique is the tncor% of large

de' iations Prior results obtained 'ia this theory are extended in man\

directions Let x - bNx) denote the 'mean' equation for the algorithm, let

5 > 0 be gisen. and let G(e) be a neighborhood of a stable point e of

that ODE. Then, asymptotic upper bounds to a~log P(Xn I' G(B), n ) N1

IxN -eI ( 6) are obtained. These are often more informative than the usual

NC

classical rate of convergence results (which use a 'local linearization') and,

furthermore, are obtained for the constrained and non-smooth cases, for

which there are no 'rate of convergence' results.
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I. INTRODUCTION

We obtain w.p.I con.ergcnce results as well as useful (non-classical)

estimates of 'rate of convergence' for fairl. general stochastic approximation

(SA) processes of the form (i 1), \ia the thcor. of large deviations (R' =

ru..lidean r-spaze)

( Il) Xn 1 ,= X n  + anbn(Xn,',n), X n  E R r,  0 < a n  - 0, Ea n  ,

We also treat the projection algorithm (1.2), where 77G dcnotcs the nearest

point of a compact consex set G.

(1.2) Xnf. = /TG(x n + anbn(Xn.tn)j

Such algorithms have been the subject of considerable attention [1] - [41, under

a great variety of conditions. They appear in various guises in many places

in control and communication theory.

In (1.1), the (t.) is a random process, which might be state dependent

itself and which takes values in a compact metric space M. The bn might

simply be a function of X n, I n  More generally, we allow (ba) to be a

sequence of vector valued (Rr) mutually independent, but not necessarily

stationary random fields parametrized by X n, t n' In this case bn is

characterized by the distribution function (which will depend on n in the

non-stationary case)

(1.3) P(b n E B I Xi,bi. ,, i 4 n) - P(bn  E B I Xntn}-

We suppose that Ibnl ( K < - for some constant K. There are many

applications where the random field notation is useful since it is awkward or

I' ~* ' ~ %~J V% ~ .-- ~ ~*. ,~ *, .- ~ ~ *i
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difficult to express explicitly all the random variables which might be

involved (e.g., the X, tn might determine other random variables which are

used, in turn, to calculate Xn+I from X). For example, consider an adaptive

routing problem, where X n denotes the routing parameter and kn the (vector)

buffer occupancies at time n. Then bn might be a random variable which

depends on 'arrivals', 'completed services', 'acceptances of arrivals', etc. at time

n, and each of these might be related to Xn , tn only statistically - but the

exact relation is either too complicated to write (perhaps involving a sum of

indicator functions of various possible events) or not necessary to write.

If bn is simply a function of X n, tn' (b(Xn'tn)), then we call it a

deterministic random field. Even in this case, the tn might be state dependent,

correlated, or b(.) might be discontinuous. If {bn} is a deterministic random

field, we write it simply as b(Xn , ln). Of course, since (k} is a random

sequence, {b(Xn, t) } is not deterministic, in the usual sense.

Perhaps the weak convergence based methods [3], [5], [6] are the most

powerful general methods for dealing with the asymptotic properties of (1.1)

or (1.2). The conditions for the validity of such methods are often readily

verifiable. One common approach is to derive an ODE (ordinary differential

equation) for the 'mean' dynamics x - b(x) - Eb(xj) (where this is well

defined) and to show that the asymptotic path of (X.) is arbitrarily close to

that of the asymptotic solutions to x - b(x) in the sense of the weak

convergence theory. Typically, under some stability property of the ODE, this

method locates the points (or point) near which (X,) spends 'nearly all of its

time'. Nevertheless, there is still considerable interest in actual w.p.l.

convergence. A powerful method would use a weak convergence approach to
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find the 'asymptotic' points or sets, and then use a 'local' method to show

w.p.l convergence of (Xn) to an appropriate stable point of the ODE, under

the usual condition that some compact set in its domain of attraction is

entered infinitely often (which would itself often be shown by a weak

convergence based method).

Among methods that can be used to prove w.p.l convergence, those based

on the theory of large deviations have a number of advantages. They can

handle a more general (and much more 'slowly converging') gain sequence (an)

then the classical methods. (They can have difficulty with problems where

the qth moments of the kn or bn(xlk n ) grow too fast as q - - (say, faster than

those for bn = Gaussian), but this rarely seems to be a serious problem in

applications.) Due to recent advances in the theory of large deviations, we can

now also treat problems with state dependent noise and discontinuous

dynamics as well as constrained problems. These facts imply the availability

of a rather powerful technique for getting w.p.l. convergence. The state

dependent noise is more general than allowed in [3], [7]. The mathematical

development here seems to more complicated than the powerful 'martingale'

based methods of [41, [8]. However, we can handle more slowly (and

erratically) converging gains, the constrained case, a different class of state

dependent noise cases, the random field model, and get a very informative

estimate of the rate of convergence even when the classical 'local' smoothness

conditions are violated. This latter point is particularly important.

Typically, the large deviations estimates involve both an upper and a

lower bound for a (suitably normalized) probability of a 'rare' event (say the

event that the stochastic approximation (asymptotically) escapes from a small

%I N %'. ? % V % . V- 1, .. e , . . . - .1 ., - 0, 'r
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neighborhood of a stable point of i = b(x)). To get the w.p.l convergence

here, only an upper bound is needed, and this allows a result under weaker

conditions than would be required if both bounds were desired. The upper

bound serves as a useful indicator of the rate of convergence, perhaps even

more useful than that obtained by the classical methods. It is often obtainable

even for non-stationary problems, in contrast to the classical 'rate' results.

The 'rate' calculated by the classical methods is just the asymptotic

variance of (X n - e)/an , where e is the limit point. Its derivation requires

a certain 'regularity' in the way a -0, and a local expansion of the dynamics

about e. Assuming appropriate smoothness (usually twice differentiability of

b(x,t) at x = e, which is not needed by the large deviations method) of b for

x near e, the classical rate depends only on the gradient of Eb(x,k) for x = 8

and on the statistics of {b(e, n)). In many applications, one is more

interested in an (suitably normalized) estimate of the probability that the path

(Xn, = > n N) will escape from some given neighborhood of e for large N.

This would involve the full stabilizing effect of the dynamics and

'destabilizing' effect of the noise in that interval, and such a useful estimate

is obtainable from our results. Also, the likely escape routes are also of

interest, and are obtainable as the minimizers in (1.4) below.

Our rate estimate takes the following form. Let D denote a compact set

in the domain of attraction of a stable point e of the ODE and with e E DO,

the interior of D. Let 6 > 0 be given. Let AD(T) denote the set of

continuous functions 0(-) with 10(0) - 61 ( 6 and 0(t) I D for some t < T.

We will exhibit a function L(0,0,t) )k 0 which is zero iff - b(O) and a

function S(T,O):

"N
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S(T,O) J L(s),O(s),s)ds (for 0 absolutely continuous)
0

- (otherwise)

such that

(1.4) lim a log P(Xmj D, some m ) n IX -81 - 6) - inf S(T,O) < 0.n -D n 'E.AD MT

T>O

The right hand side of (1.4) can yield estimates that arc very useful for a

rate' of convergence, and for the dependence of this rate on the behavior of

the algorithm in the set of interest D, as well as for the comparison of

algorithms.

In [91, [10], [11], sharp upper and lower bounds were obtained for SA

algorithms by the methods of large deviations theory, and a great deal of

useful information was presented concerning the bounds and the structure of

the H and L-functionals. These references required an - 0 in special ways,

the noise was 'exogenous', and the dynamical term b was a smooth function of

x. The methods were unable to handle the constrained problems. Strictly

speaking, the results in these references were not w.p.i convergence results.

They dealt with the sequences of sequences {Xn, m ) 0), n = 1,2, ... defined

by X = X n + a n+mb(X [n+m)' Xn _ x. Although the analysis of such

processes is basic to the convergence result, we deal here with the actual

process itself. Also, since we are concerned with upper (large deviations)

bounds only, we use Ii r to define the various functionals, rather than lim as

illustrated in the sequel. This allows a result under weaker conditions on

the (a,, b n as will be seen below.

%,9

ii
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The basic assumptions are stated in Section 2, and examples gJen to

illustrate some of them. The properties of the 'upper bound' .%hich wke use

instead of the usual log of the exponential moment (the H-functional) are

discussed. Some of the conditions ((A2.3) and (A2.6)) are stated in a

fairly general form, since they allow a simple proof of the main

convergence result, Theorem 3.1, not cluttered with all the details required

for all the special cases. It also facilitates the application of futurc

results in large deviations theory to the stochastic approximation problem.

In the sequel., we give considerable detail on verifiable sufficicnt

conditions for these assumptions. (A2.3) is a standard assumption in large

deviations theory (see also the remarks concerning it in Sections 2 and 6).

and it seems to be satisfied in all the examples of interest. Assumption

(A2.6) is of a 'large deviations' type itself, and the bulk of the paper is

actually devoted to sufficient conditions for it in 'non-smooth cases'

(Section 7), constrained and state-dependent noise (Section 5), smooth

dynamics and exogeneous noise cases (Section 4).

The total picture is a w.p.l convergence result with the associated 'escape'

probability estimates under quite general conditions.

-. -. - . . .* ... .-. - - .. . " .-. . , - -a ':."€_)
-
, ' " " e . *,",'." . ".,.. _. . ... . - "%--,* %. ,' ".".-" ' ' , r - "' -":/. ' r
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2. BACKGROUND AND BASIC ASSUMPTIONS

In this cjtion. wke introduce some rather general assumptions which Will

be used to pro',e the main conscrgencc theorem in Section 3. Twko of the

assumpti, n ((.-\ 3, and .2 6 ) arc not caiI% serifiable, but arc used simply

to facilitate the proofs in Scctikn 3 \,c prefer to worH< with these

assumptions in this section, since the conditions and methods which guarantee

them differ from case to case ke % ill return to them in Sections 4 and 5,

\,%here rcadil. \erifiable sufficient conditions for them arc given for a

number of cases that co'cr a u*ide \ariet\ of applications.

Until Section 5. we work onl, with (1.1), the unprojectcd case. Wc say

that ( ),n is 'exogeneous' or 'non-state dependent' if for any n and Borcl set A

E o(Fk, i > n, whe have P(A F,. i ( n) = P(A , X , i ( n). For the

'state-dependent' noise case, we use the model where the pair (X n , kn.1) is a

Marko\ process. This covers a large number of important applications, and

provides for a convenient analysis. For the state-dependent case, define the

one step transition function (2.1), which we suppose to be independent of n.

(2.1) Px(t"A) = P{Ftn E A I X n = x, n-I = t).

In the state-dependent case, a so-called 'fixed-x' process (t") appears in the

analysis, exactly as for the weak convergence approach [5]. For each x E R',

define (t') as the M-valued markov process whose transition function is
ni

obtained by convolving Px(t,A).

We next define the 'large deviations' H-functional. For the case of

exogencous noise, define r n  o(,, i 4 n) and let El denote the expectationn1
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conditioned on Fn. For the state-dependent noise case. let FI &

expectation given t = ' . We first define the functionals for the c.1

constant gain a n = a > 0, and then make the alterations Ahich arc rcq_.rc:

when a. -. 0. The following assumptions mill be used Suffriicnt .- r :

are given in the remarks following, and in Appendix I

A2.I. Exogeneous noise. The lim sup exists uniforml in r,,j x

compact set)*

1 N~r
(2.2a) H(x,a) = lIm - log Er exp<O.t b'x.U

N,n n N N-I

State dependent noise case. The 1rm sup e.X10 1r,, ,,: ,:.,

(in any compact set)

(2.2b) H(x,a) = ir log E" exp<a, I
N,n n NI N

A2.2. There is a continuous function b S uch Ih;; (c O,. ,.(

uniformly in x in anY compact set and in w) as n N -

(2.3a) n N 1 E.rb(xJ, - NO

(state dependent noise, and uniforml) in x in an% compact se: and in E M,

(2.3 b) T ~ Exb~xx b NO
n N+N

*We say that Ii m exists uniformly in w if for an 6 > 0 there are N. n6 such
that for n ) n6 and N ) N6 . the r.h.s of (2.2a) is (H(x.a) + 6 % p I

O&
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R c.gia r Sinc the t, arc 1-oundcd. a condition equis alent to i2 2a iw ith a

11a r , ha ngc t 2 is tk, use Iy in lieu of ET , %,here m - o(n)
r.-rnn

%,c use the ItlhoAing assumption on H( and comment ,n ii belo, and

)c! nc thc dua! functi)n or Legendrc transform

%,8, sup [ - H(x.al

a I i io ,% t -, i AtOWIii ds m h4oh iatiaA'11 ' (bi For loal: x.

Ih ;. -dt crcftiahil,t-, is a rather Aeak requirement Some sufficient

ri: n. arc i.cn in the remark below, A more general approach appears

in \.\ ,li 1i (Scti,,n 61 As discussed in Section 6, it is equi'alcnt to the

ni,,in thit , w ,,- 0 iff 8 - b('x, the mean %alue of the dynamics, and

,ccm- i. be satisfied in all examples of interest

&jemA_._.v n . h cs o Li l (A2 3) The l.s.c. property holds if

tM is ctontinuous Although conditions guaranteeing this continuit* may

a , r m casc tu, case. it is often quite eas., to prescribe mild sufficient

.tnnJ itiwn I r a gic en case For example, if b,(x,t) - b(xt), and if b(x,t) is

.ontinuuus in x (uniforml% in ft then H(x.a) is continuous Even if b( ,) is

nut :ontinuous it is often true that the noise pros ides enough 'smoothing' so

that tir some m 0 0 inot depending on x, w. N or n) the functions

D% Ix . Fy ep tfN mbp
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are continuous in (x,a) uniformly in the other variables. Under a mild

additional condition, this continuity will give us the l.s.c. property. First, we

show it for the stationary m-dependent case, where for any j, {ti, i j}, (i, i >

j + m} are mutually independent.

Define Dq(x,a) = E exp 'E1 <a,bi(xj)> and H q(x,a) = (log D q(xa))/(q+m).

Suppose that Dq is continuous for each q. By the m-dependent property and

the stationarity,

kq ~k kmm
kq +km log ET- exp <ak (~b (x, k ) >

k km log[expla4 Kkm] h E eXp Iq q-1 <abi(x, )>

6 q j + H q(x,a).

where q =K/(q + m) -0 as q . Thus H(x,a) ( Ha(X,) + 50.

To show the l.s.c. property of L, proceed as follows. Let 0i - 13, xi x and

write

L(x,8j) 0 1i su [( i> - H,(x.,a) - I

S ULM [<a,8> - Hq(x,a) - q04i].

Now, let q -. * (so that H q(X, a) + 6 qlao can be replaced by H(x,a)), and then let

M - to get by monotonicity that

Wn L(xi,81 ) 0 sup[<crS> - H(x,a)] - L(x,O),

which is the l.s.c. result.

It is also simple to prove the a-differentiability (A2.3b) for this

m-dependent and stationary model (even without the continuity in x). At
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ea = 0, the gradient of Hq(x,a) equals E q bi(x,ti)/(q + m), which converges to

a limit b(x) as q - ** Since the convex (in a) function H(x,a) is bounded

above by the convex functions Hq (x,a) + 6qla, and since H(x,0) = Hq(x,0) = 0,

the set of subdifferentials of H(x,.) at a = 0 is contained in the set of

subdifferentials of Ha (X,.) + BqI*'I for every q. This latter set converges to the

point b(x) as q - *. Hence H(x,.) has b(x) as its unique subdifferential at ( =

0, which implies that Ha(x,O) exists and equals b(x).

A proof similar to that above can be employed to get the l.s.c. of

L(.,-) if the DN,n(.,.) are continuous for some d > 0 (not depending on N,

n, x, w) and the Iim in (A2.1) is attained in the following uniform way:

Let there be (No, 1NnonI) (which do not depend on x, w or a) which goes

to zero as N 1 - No -,n-n o " , n. " w, N o -" O and such that

Al

IH(x,a) - Sulp) - log DNfn(x,a)l 4 6(NoN 1,no,n 1 )(IC + I).
1N 0)N nn

nlln;In
0

This condition doesn't seem particularly restrictive.

Remark on the calculation of the derivative Ha(x,0) in (A2.3). We

show how to calculate the value of the derivative, given that it exists.

The derivative plays a crucial role in the sequel, since it defines the 'mean

dynamics' for the algorithm (1.1). The following readily verified facts

about convex functions will be used to get Ha(x,O) in terms of the

statistics of (bn(x,n)) or (b (xtX)}.

(i) Let (fi(.)) be convex on Rr and satisfy fi(0) - 0. The supifi(a) is

differentiable at a - 0 only if each f,(-) is and the gradient fia(0 ) does not

depend on i.

i '
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(ii) Let each f.(.) in (i) be differentiable at a = 0 and let f(a) = limifi(a)

exist. If f(.) is differentiable at a = 0, then fa(0) = limif i(0).

Now we use (i), (ii) and the limit assumptions (A2.1), (A2.2) and the

differentiability assumption in (A2.3) to calculate H,(x,0). By definition

Jim- lim sup
N- No-Go N N0

n -"  
no0 *D m)n 0

This, together with the above facts and assumptions allows us to calculate

H,(x.0) as follows. Write H(x,a) in the form

lmnlog Ey expc, N+1 (bi(xj 1) -Ey bj(x,ty)> + < E jxt)
nN N N n N+1 Nb

The result that Ha(x,O) = b(x) follows by noting that the derivative (at a

= 0) of the terms to the right of the l/n is zero for all n, N and using

(A2.2). In fact, what we have really shown is that (A2.1) and (A2.3) imply

the existence of b(x) such that (2.3a) holds. An analogous calculation

works for the state-dependent noise case.

Example . Consider the simplest case, where b1(xj ) - b.(x). Then, under

(2.3a),

b(x) - Jim 1 N n Eb(x).
n,N n N+1

If the bi(x) are identically distributed for each x, then b(x) Ebi(x) and

H(x,a) - log E exp <abi(x)>, and Ii m - lim in (A2.1). If the measure induced

by bi(x) on Rr is weakly continuous in x (as is rather common in applications),

then H(-,.) is continuous. The rate of convergence estimates for classical

stochastic approximation I1) - [31, [6) do not cover this case unless b(.) is an

-S ~-. - S * ,.. *,*- ~ S.* *.*
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appropriately smooth function of x. Thus, even in this simple case, which

covers many applications where the b i involve (e.g.) indicator functions, we can

get a rate estimate unattainable via the classical theory.

Example 2. The case of Example 1, but where (b,(x)} are not identically

distributed. Define Hi(x,a) = log E exp<(,bi(x)>. Then b(.) is still given by

(A2.2) and

H(x,a) = lim N . H.(x,a),
N,n n N+1

which exists and is differentiable at a = 0. The noise process here is

non-stationary, but we can still get our 'rate' estimate. The example also

illustrates that the use of Ii m rather than lim in (A2.1) is of much more than

academic interest. If the measures of the bi(x) are weakly continuous in x,

uniformly in i, then b(-) is continuous.

Exampe . Remarks on the use of lir rbther than lim in (A2.1). The

use of li m is somewhat equivalent to taking a worst case, For example, let

bn(xt) - b(x) + k, where (td is a sequence of zero mean mutually independent

Gaussian random variables with covariances (En}. Since

I Ne1 N n r

n log E exp<a, N+n (b(x) + ) - b(x) + 2- N <f < X
n N+i 2n N+1

the! i m in (A2.I) is just b(x) + a'.Ea/2, where r is the lim of -n in the
n N+1

sense of non-negative definite matrices. In man problems, the dynamics are

stable enough so that if the noise terms are multiplied by some factor (to take, say.

En to E) we still have the required 'stability' to get the desired w.p.l convergence.

S ~ 4 ' % % %~-*- %% ~ - %*;~~- -~;i-:m*' ~ '-%'--. ,/ . '%% % % %
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Example 4. Let bi(x,t) be simply a function b(x,k) (i.e., a deterministic

random field), and consider the case of Markov state-dependent noise, with

one-step transition function px(t,.). Under a uniform (in the initial condition)

recurrence condition on fixed x-process (t') and continuity of b(x,k) in x

(uniformly in t), the following facts are proved in [24]. Let C(M) denote the

continuous real valued functions on M and define an operator mapping

C(M) -. C(M) by

(2.4) P(x,a)(f)(t) = f xp<,b(x,0)>f(k)Px(k,dO).

The eigenvaiue X(x,c) of P(x,a) with the maximum modulus is real, simple and

larger than unity for a 0 0. Also H(x,x) = log X(x,a) and H(x,c) is analytic in

cL If the right side of (2.4) is continuous in x for each f(.), a t, then H(.,.)

is continuous. Also b(x). J b(xA)ux(dt), where uX(.) is the unique invariant

measure of (t), and Ii m lim in (A2.1).

These various examples can be combined and extended. Other examples

are in Sections 5 and 6, and in [I1 and [24].

The Limit ODE and Proterties of the L-Function. In the expression

(2.3), defining the mean 'dynamics' of (1.1), the terms are weighted equally.

This corresponds to the case an a. We will see in Section 3 that, under a

simple 'asymptotic continuity' condition on (an, b(-) also yields the

appropriate 'mean' dynamics when an - 0. In order to get any sort of useful

convergence for (Xn), the ODE

(2.5) N = b(x)

must have at least one stable point We assume:

" ''" ' 2* . .2 g,# -'''r'.". -d.'". z.v J't.%. % % ' %.* .'-. . .'''k.""". .. . "' .
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A2.4. The ODE (2.5) has a unique solution for each initial condition and

there is a point e which is asymptotically (not necessarily globally) stale in the

sense of Liapunov, with domain of attraction A

A2.4 implies that for any compact G C A and B > 0 there is T < such that all

solutions originating in G are in N (8), a -neighborhood of 0, for t ) T.

Recall the definition of the dual of H(-,-):

L(x,B) = sup[(<,0> - H(x,a)].

The following lemma collects several facts concerning L(.,-) which will be

needed later.

Lemma 2.1. Under (A2.3),

(i) L(.,.-) ) 0.

(ii) L(x,B) - 0 iff 0 - b(x).

(iii) L(x,B) - if 101 > K.

Proof. (i) This follows from H(x,0) - 0.

(ii) The convexity in a and the o-differentiability of H(x,a) at o = 0

imply that b(x) is the only vector in Rr satisfying

H(x,o) - <(cr,(x)> ) 0.

The result follows from this.

(iii) Since Jbi(.,.)I is bounded by K, H(x,a) 4 Kjo4. If 11 > K, then by

taking a - nO we see

L(x,8) ) n1j 42 - nIBIK 0 0
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Dcfine to = 0, tn = Enoa and m(t) = max(n: tn ( t). We will require the

following 'asymptotic continuity' assumption on the sequence (an).

a
A2.5. Jir a-=1

Itn-ti-r o am

n,rn-.=

For every N we define KN(s) = am(tN+')/aN. If follows from A2.5 that

given 6 > 0 there is c(s) > 0 and N(S) < - such that N ) N(6) and

It-sl ( c() imply IKN(t) - KN(s)I ( S. Define K(t) = Iim KN(t). Then A2.5

implies K(t) is continuous and satisfies 0 < K(t) < - for 0 < t < *

Examoles. Let an = 1/n. Then m(t n + s)/n(exp s) -I as n - -, and

KN(S) exp -s. Let an = I/n/, - E (0,1). Then m(t +s)/(n+snY) - I

as n - and KN(s) - 1 . If an = c/log n, then m(tn+s)/(n+s) - I and KN(s) -, 1.

In general, if an is nonincreasing, then K(s) 4 1.

The H and L-Functionpls for Non-Constant (a}. We next define the

analog of the H(x,c) for our case of non-constant (an. Owing to the fact that

a is not constant, the H and L functionals will depend on time, if K(t) is not

equal to unity. Define the 'centered' H-functional

Ho(x, ) = H(x,a) - <(,b(x))

and set

(2.7) H(x,as) - K 1 (s)Ho(x,K(s)() + <cEb(x)>.

The definition (2.7) and (A2.2), (A2.3) imply the differentiability of H(x, .,s) at

a - 0 with b(x) - Hl(x,0,s) (it will not actually depend on s). Let L(x,8,s)

denote the dual of Hl(x,crs):

r.,NI. w v v ,.,,.v* .* i** ~ ~ C e -

!-
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L(x,O,S) = supf<C ,8> - Ti(x'C('s)].
a

Using (2.7), we see that

L(x,S,s) = sup[(a,1> - K1 (s)H 0 (x,K(s)a) - <c,-b(x))J
a

- K-'(s)L0 (x,K-1(s)K(s)(83 - b(x)))

-K(s)L(x,B3)

where

Ljx,0) =sup I<a,0) - H0)(x,a)] = L(x,0 + b(x)).

(A2.3) and Lemma 2.1 then imply that L has the following properties:

(i i) L(x,S,s) =0 iff 8 = b(x).

(iii) L(x,S,s) is jointly I.s.c. in (x,S).

*(i V) L(x,S,s) = if 181 > K.

We now define a large deviation action functional for (1.1). Let C[0,T]

denote the space of Rr-valued continuous functions on [0,T]. Then for 6

CtO,T], define the functional

(2.8) SX(T,O) - T (O(s),O'<s),s)ds
0o

if 0 is absolutely continuous and 0(O) - x, and set SX(T,O) =*otherwise.

In the sequel, all functionals of the tap;e (2.8) are assumed to take the

value +- if 0()is not absolutely continuous or 0(0) 0 x.

N '~ -V ~ ~ V~.
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For purposes of the next assumption and the proof in Section 3, it is

convenient to define (for each N and x) the form (XN, 'x n ) N) of (1.1), which

starts at time N with initial condition at time N satisfying X 'x = x and then

(2.9) X N , = XN,x + anbn(XN,x' tn), n ) N.ni In n

In the exogenous case, the noise in (2.9) is the same as in (1.1), while in the

state dependent case we will specify t N E M. Define the continuous

parameter interpolations of the processes (1.1) and (2.9):

(2.10) X(t) = [(t-tn)Xn+ 1 + (tn+l-t)Xnl/an, t E [tn,tn+an) = [tntn+1].b
(2.11) XN'x(t) [(t-(tn-t N))XN . + ((tn+l-tN)-t)X Nf x /an, t E It ttNl

n n I/ n ' n E n -N ' t n + -- t N

We will use (A2.6) below, given in terms of the processes XNx(.). The

assumption is certainly not readily verifiable, but it allows a general proof of

the w.p.l convergence and the upper bound to the convergence rate given in

Section 3. It is convenient to use the condition as it is stated, since it is the

key condition in Theorem 3.1, and in different cases, different sets of

conditions would have to replace it. In Sections 4 and 5 we devote

considerable attention to a series of verifiable conditions for (A2.6), and cover

a large number of interesting cases. Let Cx[O,TI denote the set of continuous

Rrvalued functions on [0,T] with initial value x, and with the sup norm

topology.
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A2.6. Let s > 0, B > 0, T > 0 and compact F C AO (the interior of A) be given.

Then there is No < - such that for any x E F, any set A E C,[O,T] satisfying

infoX S.(T,O) ) s. and any N ) N., we have

(2.13a) aN logNPXN'x(-) EA ITO -S + 5

(2.13b) aN log p(XN'x(.) E AI N = - s + 6

for almost all w and all t E M in the cases of exogenous noise and state

dependent noise, respectively.

Remark. The uniformity of the estimates with respect to w (respectively

{) imply that (2.13a) (resp. (2.13b)) continues to hold if we replace N by any

stopping time M ) N0 .

Finally, we state the slowest rate at which we can allow a - 0.
n

A2.7. For every B > 0, E nexp - B/an < -, Ean = **-

For example, let an = cn/log n, and c. - 0 with Ean  c * Then (A2.7)

holds.
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3. THE BASIC CONVERGENCE THEOREM

The following lemma gives several important properties of our action

functional.

Lemma 3.1. Assume (A2.1) to (A2.3). Then for any T > 0:

(i) SO(o)(TO) is l,s.c. in 0 E C[0,T].

(ii) For any compact set F C R", and any - > s ) 0, the set

G (0 {: Sx(T,O) $ s)
xEF

is compact.

(iii) Sx(T,O) = 0 iff 0 = b(O) (a.s.) in [0,T], and 0(0) = x.

(iv) For each c > 0 and T < - there is a 6 > 0 such that 113- b(x) ; E

implies L(x,B,s) 31 B on [0,T].

Proof. (i) See [14; Theorem 3, Section 9.1.4].

(ii) Recall that for 181 > K implies L(x,0,s) = for all s 0. It

follows that 0 E G implies that 0 is Lipschitz continuous with constant i

K. Ascoli's theorem then implies that G is precompact, and (ii) now

follows from (i).

(iii) Sx(T,O) = 0 iff L(O(s),O(s),s) = 0 a.s. in [0,T]. Since L(x,$,s) = 0 iff

8 - b(x), Sx(T,O) = 0 iff 0 - b(O) a.s.

(iv) It is enough to work with L(x,8). Let xn -" x, a n - 8 such that I0 -

b(xn)i n > 0 and L(xn,B n) 0. By the l.s.c. properties of L, li.mL(x e d

L(x,B) which equals zero only if 8 , b(x). 0

ML|
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We now present the convergence theorem

Theorem 31. Assume (A2.3) to (A2 7), and tlh: git P ni, ,,7

neighborhood G(6) of e such that G(e) C A0 thert i z a s i a ',;,J ,, , ,

such that Xn E G(e).

Then X n - e w.p.l.

Assume in addition that given E > 0 thcrt- N. .

a,/a N  1 + E for all i N ) N . Th'n

(3.1) limaN log P(X fG(B), some n . . - 8 :
N

inf Sd(o)(t.0) - -S
.1 o - el 4 B

(t)-G (e), some t<*

Remarks. If not all paths visit some neighborhood , e :.:,.r.,c

often (i.o.) then we will have X n -e w-p I with respet t, th -,c par

which do. It is expected that the recurrence condition would t'e .er." -,

by a weak convergence argument. Under the last assumpti n , 1 h

theorem, K(t) ( I , which implies L(x,8,t) a, L(x,B) It is then simpic

to show (see the arguments below) that for small 6 > 0 the r h

is strictly negative. In particular, if an is nonincreasing, then Krt) I

PLQf. For 6 > 0, let Nr(,) denote (x: le - xl 4 6) %e w l first prc,:e

that if (Xn} visits G(8) infinitely often w.p.l, then (Xn) visits NO) e infinite!\

often w.p.l. We can suppose that N25 (e) C G(O).

Owing to the stability assumption (A2.4), there is TI < - such th3t if t

satisfies 0 b(O) and 0(0) x 4 G(e) then 0t) C N 6 1(e) for t ) DefInc

%
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(3.3) lim P{Xn+ it N6 1 (), some i <*IX nEN 62(e)) = 0.
n12

We have the obvious inclusion

Xl+i I' NSI (), for some i < and X n E N6 (e))

C (X, i N (6) for some m(jT 2 + tn) < i ( m(jT 2 + T 2 + tn)

and/or Xm(j+T+t) N 5 (e) , some 0 ( j < , and

X e N6 (e))

= E 2  r (E 2  )C(e0 j<_ EM(jT2+tn
) i<j m(iT2+tn), r (X n, E N r2().

It follows that

P(Xn+i I' N6 (e) , some i < *X C N6 (8))

(3.4) P(E 2  2 r iT E2  )C n (Xn  N6 (6)))
m(jTt ) i+ m(iT 2 +t)

Note that for an), fixed j inclusion in the conditioning set implies

X T +tn) EN 6 (e) . Thus (3.3) follows from (3.4), (A2.6), and (A2.7).

We now consider (3.1). Let T > 0 be fixed. Define the set of paths

A(T) - (0:10(0)-Of e 6, 0(t) i G(e) for some t 4 T, and

10(t)- 01 ) 5/2 for T 4 t (T).

We claim that for large enough T,

(3.5) inf SO(o)(TO) ) S

4-(r
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First note that the same proof as that of (3.2) implies there is c3 > 0 and

T3 < - such that if we define A3 - (0,0(0) C G(6), O(T3 ) It N 6 / 2(e)) , then

T3

inf J L(O(s), (s))ds ) c

Let i = the integer part of (T-T)/T.. Then for the paths in A(T) that do

not escape from G(O), we have

SO(o)(TO) ) ic3

which implies (3.5) (when T is large).

Now define the stopping times TN by TN = N, rN
0 i +1

infin ) m(ri + T): X n C NS(e) or X n  G(e)) and the events

EN = x G(e) or N t T) . We use the following estimate,
E31 Ti+1 i

which is derived in the same way as (3.4).

P(Xn f G(8), some n ) NIXN - Nom)

(3.6) 4 E P(EO Ifn(E)C (XN E N(
j=0 <j

Fix h1 > 0. By (A2.6) and (3.5), an upper bound to the r.h.s. of (3.6) is

given by

" exp - (S - )/ai
i=N

- (exp - (S* - h 2)/aN) E exp[-(S" - hl)/ai+ (S" - h2 )/aN]
i=N

when N is large. Thus (3.1) follows if we prove that given h2 > 0 there

is h > 0, <-,and M < sothatfor N N,

N-,- -- , . - - ...- .N -W % ,
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(3,7) E exp[-(S - h1)/a + (S' h2 )/aN] ( M.
i=N

To pru)\c (1 7), take = (h 2 /8S') A , and h= ES'2. Pick N large

enough so that a/aN 1 + for i ) N . Then for i such that

a /a N ) I - c we have

[-S + h1 + (S - h2)a/aN]/a,

4 [h1 + "- h 2(I - £)]/a -h2/41/a i

On the other hand, if a/aN , i - , we obtain the following bound for

the exponent:

[hl - ESli/at = [ - '/211/a

Hence (3.7) follows from (A2.7). 0



4. A PROOF OF (A2.6) FOR EXOGENEOUS NOISE AND SMOOTH

DYNAMICS

In this section, we prove (A2.6) under more readily verifiable condit',ons,

and in the cxogeneous noise case. In Section 5, we state and discuss other scts

of conditions under which a similar proof yields (A..6).

First, we show that the H-functionals as defined by (2.7) arc the

appropriate ones for the case ar- 0 in a general setting. Then, in

Theorem 4.2, a basic sufficient condition for (A2.6) wkill bc obtained.

Theorem 4.1. Assumne (A2.lI), (A 2.2) and (A 2.5). The?? fo r the'

exogencou noise case and uniformzly in w (w.p. I.) and in t tin an v houildej

interival,

I fm(tN+t+&)

A- N N I N aa ~

For the state dependent noise case, and uniforrm/v in t and tit t in an), hounlded

~ N Lm(t+t+)

Assume in addition (A2.3). Then for an), 0 4 Ti < T 2 < -, H a(x , ,t)

equals b(x) where b(x) also satisfties

-I m(t + 2 )
(4.2) ;X-7;:-lim E ET ab(xAt),

T-T, N-* YN m(tN+Tl)

with an analogous statement holding for the slate dependent noise ca'se.

ftJQQ[ We only prove (4.1a). The proof of (4.1b) is similar, Also, (4.2) is
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ob'ious b\ (A2.5). Fix A > 0 and define bN(x) = t t j. RcL T! th,

left side of (4.1a) as
-:-- IF~ E xpr("Zp+A) <uab. bN m a

li Ii m aNlog EF) ebp 1=a b 1) , ) a l

+ Im- lim aN <cab" (x) ,a
A A N m(tN4t)

onl- work with the first term in (4.3). It will be proved that the first term is

bounded abo'c b\

(4.4) K '(t)Ho(x,K(t)a)

which will yield the theorem in viewA of the definition H(x,at) =

K1 (t)Ho(xK(t)a) + <crb(x)>.

By differentiating the part of the first term of (4.3) to the right of the aN

term with respect to a ,, we see that it is convex in (a,), non-negative and zero

if a, 0. Because of this, the definitions of the KN( ) (below (A2.5)) imply

that there are cN(A) tending to zero as N - - and then A - 0 such that an

upper bound to the first term of (4.3) is obtained by replacing the ak/aN there

by an upper bound (KN(t) + cN(A)), and by replacing the left hand aN by an

upper bound A(KN 1(t) + cN(A))/[m(tN+t+A) - m(tN+t)1.

We next make use of the following fact. Given a convex function H(a)

such that H(0) - 0 and H(a) ) 0, the inequality H(sa') ( sH(a') is valid for

all 0 ( % I, and for all a'. Picking s - si/s 2 and a' - s 20, we obtain for

all 0 4 s I 1 s 2 and for all a that

S, v . . % % , * °* . * --. . . ., . . . . . . . . .
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(4.5) s,' H (s ia ) 4 s 2 H(ss2a) .

We will take s, = KN(t) + CN(A) and S2 = K(t) + CN(A) + A.

Since KN(t) K(t) + A for large N, an upper bound to the first term in

(4.3) is also obtained by replacing the ai/aN by (K(t) + CN(A) + A) and the aN byA
*A(KN)X(t) + cN(A))(KN(t) + cN(A))

(K(t) +cN(A) + A) (m(tN + t + A) - m(tN+ t))

Doing the substitution, using the definitions of b(x) and H(x,a) and taking

limits yields the desired bound (4.4) for the first term in (4.3) 0

Remark. We have used the fact that A2.5 implies KN 1(t) is bounded

from above uniformly in N for N large.

In Theorem 4.2, we prove (A2.6) under condition (A4.1) below.

Remark. For a continuous parameter problem in [12], Freidlin uses a

continuous parameter analog of (A4.1), with Lipschitz continuity of b(.,t) and

continuity and a-differentiability of H(-,.) to get the large deviations

inequalities. He uses lim rather than lim to define his H-functional. An

examination of the proof in [12] shows that (uniform) continuity of b(.,t) is

enough. Also, for our 'upper bounding' needs the ( in the 1 im of (A2.1) is

enough. It's not actually necessary that the lim exists.

A4.1. (kn) is exogeneous. The random vector field bn(x,) is deterministic -

and so ,we write it as b(x,t), where b(.,t) is continuous, uniformly in and

Ib(x,)j 4 K <
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Theorem 5.1 extends Theorem 4.2 to the 'non-deterministic' random field

case.

Theorem 4.2. (A2.6) holds under (A2.1), (A2.3), (A2.5) and (A4.1).

Remark. The proof is along the lines of Freidlin, Theorem 2.1 of [121,

with appropriate modifications for our use of lim, an - 0 and the

uniformity in x required in (A2.6). We will use the results in Freidlin's

proof whenever possible to simplify our argument.

Proof. (i) Since b(x,k) is continuous in x, the i m defining H and H and

b are taken on uniformly in x in any compact set, and the Ii m in (4.1a) also

holds uniformly in x (and also in w, w.p.1). This uniformity implies the

following. Let T < -. Let F C R r be compact and let A > 0. Let a(.) and

V(.) be functions defined on [0,T] that are constant on intervals of the form

[iAiA+A), and let V(.) be F-valued. (Assume w.l.o.g. that T is an integral

multiple of &) Then, uniformly in 4<(.) and w,

Jr aNlog EFreXP I+ <ct i - tN ),aib((ti - tN),i))/aN

(4.6) 
N

IT I(Vt),c t),t)dt.

0

(ii) For fixed x and the above defined 4<.), define the process (X 0,N),

analogously to the definition of (X ' N) by XON _ x and

(4.7) , N X.N + -"n+1 n X,+abn -N), td),

and its piecewise linear version (analogous to the definition of XXN(-))

4V



-4.5-

(4.8) X O.N(t) -- [(t -(t n  - ,, o+" +  ((tn+l N -tX0 ]

for t E [t n - tN, tn+ - tN).

The process XOPN(.) plays an important intermediary role in getting the

: desired large deviations result, since it is relatively easy to get one for

XO'N( -), and then to extend it by suitable choices of 4<.).

Define XO 'A = (X 0IN(iA), i = 1, ..., T/A). We next prove a large deviations
XN

upper bound for the vector X" , which will be uniform in x (in any compact set

and also in w, w.p.l). Let FC Rr be compact. Let a ERr, i < T/Aand define a(.)

by (the manipulations at this point are similar to those used in (12, Lemma 3.1])

U S) = =1a , sE [kA - A, k 6).
i~k

Then by (4.6) (where the I i m is uniform in x C F1 , w (w.p.1.) and (.))

(4.9) Ni a log Ey exp [Tj <'0,)N(iA)>/a]

lim aNlog Ey exp- <ti-)a i(b( ti'-tN)'ki) + x)>/aN]
N NL.NN

f jil( Kt), t),t)dt + <x, Te a >

1

0 1
0 j=i+ l J1

- hx,'k ( 1 , .... UT/a)

For (0 i , i 4 T/A) a i E (R )T/A, define 1 .... 03p T/) to be the Legendre

transform of hXl(a .... /A).

i

? ;.
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Remark, The last equality in (4.9) is not really correct, since H(,,t)

may differ from H(4,a, iA) over the interval [iAiA + A]. However, since the

Legendre transform of H(4),as) is K' 1 (s)L(P,S), neglecting this variation

amounts to no more than multiplying 1"(13) by a scale factor which tends to

one as A tends to zero, uniformly in all the other variables (x,0,0). Since we

are subsequently allowed to choose a > 0 as small as desired, we can safely

ignore the time variations over the interval [iAiA + iA] as a matter of

notational convenience. We maintain this convention in later proofs as well

but will use " or rather than = or ( to indicate that we are ignoring

such a scale factor.

Define 13A() = (0: 8x.P(0 ) ( s). Then (4.9) and a theorem of G'rtner'sx

(116], Lemma 1.1) imply that for any 6 > 0, h > 0 there is a N o < - such that

N ) N o implies that (for x - F1 , 4K-) as above)

(4.10) P(d(N 4,*i(s)) > 6) ( exp - (s-h)/a

Here d, is the Euclidean metric on (Rr)T/A.

In the proof of his result, Gi'rtner used a definition of (his) H-functional

(it is the function G in (1.1) in [161) which involved a lim rather than a I i m.

But the proof of his Lemma 1.1 is valid if i m is used or any upper (l.s.c.)

bound to the i m is used, if that upper bound is used to compute the L-

functional. Also, according to the proof in [16], the inequality (4.10) is valid

uniformly in all variables in which the inequality (4.1a) is atta-ned uniformly

as N , A- 0. Hence (4.10) holds for a.a. w, all x E F1, and 4<.) as above.

(iii) From this point on the details are essentially the same as for the

classical case [12, Theorem 2.11 (which also uses Gartner's result (4.10) for the
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'classical' case), and only an outline will be given. The interested reader

should refer to [12] to fill in the gaps. A main difference is that we must be

more careful about the uniformity of the estimates in x and w. The argument

can be divided into the following steps.

(a) From the definitions of JX, and -, it can be shown [12, Lemma 3.1, p.

137] that
T_

eXAI( 8 ) J L((S), B(s), s)ds
,0

w&,here we define 0(.) by the linear interpolation

13(s) = [(iA + A - s)0 i + (s - iA)3i+]/A, for s E [iA, IL + L].

(b) Since Ib(x,t) 4 K, the XOPN(.) are Lipschitz continuous with constant

K. Since

"nf L(x,0,t) *191>K

for all x, the paths in the sets

,x(s) = (0. SX(T,) 's)

and

T
x'(s) - to JO L(.(t), 0(t), t)dt 4 s

are also Lipschitz continuous with constant K.

These facts imply that given 6 > 0, there are A0 >0 and 61 >0 such that

for A ( Ao and all x (d and d,, resp., are the sup norm and Euclidean

distances)
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d( N, > 6) C(d 1(X4A' > 51)

This and (4.10) imply that given h > 0 and 6 > 0 there is N0 < such that for

N 3 NO, a.a. w, x E F1 and 0 as above we have

(4.11) Py {d(X 0,N, j'A(s)) > 6) ( exp - (s - h)/a.
N N

(c) As a consequence of the l.s.c. property (as a function of 4( ). V )) of

f'T L( (s),(s),s)ds, given h > 0, there is 6B > 0 such that if d( ,O ) 1 6 and x =

0(0) E F and S (T,O) ) s, then fT L(O((s),(s),s)ds ) s - h [12. p. 142].

(d) Since b( .,) is continuous, uniformly in k, given h > 0 and 61 > 0 (as

in (c)) and 6 > 0, there is a 5 > 0 and 51 > 0 (and ( 6) such that 0 E C [0.T].

d(0 0) ( 6B implies that

(4.12) (d(XNx,0) 6) C (d(X, ,) 6

In [12], Freidlin uses a Lipschitz condition on b(.,k) to get the set inclusion

analogous to (4.12). But continuity is also sufficient.

(e) We now combine the facts in (a) - (d). Let h > 0 be given and define

62' 61, 6 as in part (d). Set i = min[6 Define the compact set R(x)

= (0 e Cx[0,T]: 0 is Lipschitz continuous with constant K). Let (0,, i ( NI) be
A A

a -net of R(0). Then {( = x + 0i, i ( M) is a B-net of R(x). Choose A > 0

and Oi such that the Oi are constant on the intervals [jA, jA+A), j ( T/A, and
A

sup d(Oj,Oi) ( 6/2. Define O = x + 4i" For x ranging over F,, the (t),
i '

t ( T take values in some compact set.

By t,.e set inclusion in (4.12) and the definition of B, we have

% %.
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(4.13) P N(d(XNx, (S)) >

M
Py ( YNdxN, O) 4[ S|d(Y"

N (dOXix ( s ) ) > i )

I PN (d(X(

If d(OAx(s)) 0 0, then Sx(T, ) ) s. It follows from part (c) that

I- I impliesI(d(Oji,':x(S))>6 )  = 1 im le

(4.14) (d(X , i) < r

C(xei,NE [0 T[C JT L(1j0*)c)d s - h, 0(0) = x]}
0 D

Now, by part (b) there is N0 < - (not depending on x E F such that for

N ) N. and a.a. w,

(4.15) Py'N(d(X '',r') , (2) ))>i 4 exp - (s - N

Combining (4.13) and (4.15) yields that there is N0 < * (not depending on x E

F or on w (w.p.1)) such that

(4.16) P y{d(XNx 0(s)) > 6) ( exp - (s - 3 h)/aN.

Now suppose that we are given A C Cx[0,T] satisfying inL S (T,) ) s We
OEA X

claim that d(AA.(s-h)) > 0. If not, there are E A, e 0 0x(s-h) such that

d((, -" 0. Since 0,(s-h) is compact, we can assume that 02 - * CE (s-h)

Then 0' * implies that * e A. By the l.s.c. of S (T,.), we have S (T,O)

limSx(T, i2) ( s - h, a contradiction. It follows that there is 6 > 0 such that

inf Sx(T,O) ) s implies that d(A, Ox(s-h)) > 6 for all such A. Together with
0EAX

(4.16) (with s replaced by s - h there), this yields the existence of N, < (not

-' ' . ' ' " > K.. - ",..-,, ,. -..- - ',"N ' """%,'' ' ' ,' ' ' "" "'.""" ' ,' '-"•"-" "•" • . .• . -



- .~rr - r .vW'1U rwwr r r w w.-..-- ~- .-. ~---~- -~- -

a

E F r ''"c j N

a, P; \% EAt Ic1:~ 1%

I-

N
A'

A-

N

*1

flit

.4

.4

I
I
4

N

$
b

.5
.5

"S

a

C' ~ ~ * N-~%%.%%



I~ I %SO)%S

s A ( 'W iicr' Mlclhod I'm %(,n Smoo.th R andom 1 icid-

4 ~ ~ ~ , A~~~~ h(:,c 1hK *Jcfcrn!n-.I'. rand, mn iI

* ''~~c .i*c ihe -c g , thit the (i~n~nHIp

T ' A -

k, ' mr' A i

A n A r.i .m i~' h. rc i- u, c ! n

r,. nrt..> the At IA-r '' pci0, Ahcr

j c fnc. 4. e n nlr a k d , rt rI r nf m %a ili, % t

3 ,,C - 1 a A - i a t , t e p t kt4a . r. m l m.n t . a % r

h h ta t smal - T en a cque~c i r .in m \ ra ! i

r ! -c !hi~~t he fa d m filA h ,x i )c rr* nfd ,i



-5.2-

sense that the resulting processes have the same measures) as F(Xtn,\'d)

,Ahcrc F is continuous in x. Then, a proof very close to that of Theorem 4.2 is

used. The details for a scalar case (for notational simplicity) where bi(x,t) = bi(x)

are gi'%en in Appendix 2. They are an adaptation of the proof of the vector case

large deiations upper bound given in (171 for the constant a. = E case. An

analogous adaptation for the general vector case yields Theorem 5.1.

* . ~ '\0 V% ~ ' :., ~-:.- ~ *qSb . ... *.*~ % .~. .. .~ . ~ * . ~Sf * . - -
I.
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5.2. State Dependent Noise

We now prove the form of Theorem 4.2 for the state dependent noise case. In

order to provide a reasonably general proof, we generalize slightly the definition

of the state dependent (k) or Markov (t ,,X,) processes. Let (xn) be a sequence

of either random variables and/or constants and (t.) a random sequence with the

following properties. xn is a function (perhaps deterministic) of {x,, j < n), and

P{tn E  " I tn.1 ,Xn-1- X , tn-i, Xn-ii < n) , p(t,.). Such an (xn) sequence is said

to generate ( )" Most often x = X or XN,x for some (to be stated whereIn

necessary) initial condition and starting time.

We use the following condition, where H(x,a) was defined in (2.2b). The

condition is satisfied in many problems of practical interest. An example

will be given at the end of the subsection.

A5.2. (i) (bi(.,.)) is i.i.d. and Ibi(x,t) 4 K.

(ii) Gisen 7' > 0, there is a 6 > 0 such that if (xi) generates (ti) and xi-x 4 6

for all i, then (E t denotes the expectation given the initial condition t=

N

(5.1) lira N log E, exp (x, E bj(x, ) ( H(xx) + 7(l4 + 1) - H/(xa),
1

uniformly in t e M and in x in any compact set.

Theorem 5.2. Under (A5.2) and (A2.1), (A2.3), (A2.5), condition (A2.6)

holds.

Proof. The proof will be set up so that it can be completed by an

argument of the type used in Sections (c) and (e) of Theorem 4.2. The basic

%U % %% %-



-5.4-

technique is adapted from 120], .%-here a general treatment of the upper and

lower large dcviations bounds are obtained for the constant an = a > 0 ca~c

Fix 7' > 0, and let B be defined b. (A5.2). The proof of Theorem 41

adapted to condition (A5.2) yields: for any sequence (x) gcncrating and

satisf\ ing Ix - xl ( 6, we ha,e (uniforml' in and in x in an\ cornpa:t ,ci

and in the sequence (x)),

-l - r '"z

(5.2) im nim N log E exp rE i cI a
L ~ QU Nu Mx~~

\k here

H (x,mt) = K'1(t)H 0(x,K(t)a) + < ,b(x)> + 7K+ '(tiKft)X + I.

analogousis to the case in Section 4. Define L to be the dual of t-

By (5.2) and the theorem of G'rtner referred to in Theorem 4 2. if {x

generates () and Ix, -xl b, then for Borel A,

(5.3) lim aN log P E aIb,(xt,, , ) C A I km( tN+t ) N t)inf L-- Y ,.o
N m(t N+t) O,

where the estimate is uniform on any compact (xi) set. as vell as in the

sequence (x,).

Henceforth ( .) is some function in CxO,T] with Lipschitz constant 4 K

Recall the definition of (XN , n ) N) from (2.9). The sequence generating it

will be the x,-arguments in b (x1 ,t) in the functions belov, It %ill usuall\ he

(XNx, n ) N). Let A ( 6/(7 + K). Define DAtO) - t + 6) - 0 1 hcn. it
n

follows from (5.3) that (uniformly in each compact t. x, k set

NON V %V p\% %, V-:.~ %, V N .~.*.~. *
JF
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(5.4) lrn a~log fmP N E~ ab(X"-,J ) - D'6(01 4 2-yL
N Im(tN+t)mtN.)

* -(t)j ( t

Bs [20. Lemma 2.4]. (A5.2iij implies that for given 0, we can find 83'

such that 18 - IS'l ( -yt and

(5.5) L.0 ) .t) ( L y ) Mt03 L) +-.

Bs using this in (5.4) 'kc can replace the right sidc b

5 6 -inf 41-40t0 Lt) + Y

(Sincc -y can bc made as small as desired, the added -yL wIll e%-ntuail\ bc

dropped)

[ix TI to be an integral multiple of L. Then (uniformly in x, on

each compact set) (5 4) and (5.6) icld

(5 ~ lim a log P(diX%-xO 4 -YL I tN t)
N N

4 lim a log p(!\N.,(JL) - O(IL), 4 1 4 T -4 N

[ ur a~lgP(~A(XNx(iA) - 0('A))f

0 N I

IX 41(in - OIL~l Y4. M(tN+1A))

~ -A 1 rnf L(4OiA). Ai&) + -YT
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Let OA(t) = 0A) for t E 1i, 1A + A), and define AZ(O) (0 E C.[0,Tj: ((t) is

constant for t C [iA, iA + A), and I4(iA) - DA iA),'A 3-Y, i T,'A). Then the

r.h.s. if (5.7) may be replaced by

T _

(5.8) - n L0(A(t) t),t)dt + -YT.

Since S ,(T,) < - implies that 0 satisfies a Lipschitz condition that is

independent of x, there is A > 0 (independent of 0 and x) such that for 0

satlOt\ Ing SxT.¢) < , wc have

suF lopt) -m -tY,
(5.9) 0<tT "'

sup sup jI(t) - 0(t)l ( 4/T.

U:sing the result of part (c) of Theorem 4.2 we can nowk complete the

estimate just as we did in part (e) of that theorem. Let s > 0 and h > 0 be

given. BN picking y small (which implies A > 0 is small) we have that x C F,

S(T,.) ) s implies

T_

(5.10) - inf L(A(t), Vt),t)dt (-Sx(T,O) + h..~A(0) 0

Let y > 0 now be fixed, and set m - rin[6,AY]/2. Define R(x) and

choose the -net of R(x) whose cardinality is independent of x C F as in

part (e) of the proof of Theorem 4.2. Then using (5.7) through (5.10), for

large enough N (and independent of [ and x) we have

. .... . . . . . ..
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Pki N X ) > 6)

SP,(d(X N x ' ) ( YA)Id )

, (exp(-Sx(T,O) + 2h + "yT)/aN))l -l~ N)) .x())B

M exp(-s + 2h + 7T)/aN.

(A2.6) follows from this estimate in the same way it followed from (4.16) in

Theorem 4.2. 0

Examvle. We present one example of the processes that may be handled

by the methods of this subsection. The example includes the adaptive routing

process mentioned in the introduction. For additional examples, the reader

may refer to [20].

The basic method for proving that an assumption such as (A5.2ii) hclds is

to first show (2.2b), and to then use (assuming it exists) the continuity

properties of the measure induced by b1(x,{ i) as a function of x, which must

be uniform when conditioned on t -r Conditions under which (2.2b) holds are

given in Example 4 of Section 2. For more details or that and other

examples, the reader is referred to [24].

We next state the assumptions of the example, then discuss them, and then

prove (A5.2ii). Assume (i) - (iii) below.

(i) There are functions ai(x), pi(x,t) ) 0, 1 4 i ( N, with ai(x) continuous in x

and pi(xt) continuous in x. uniformly in . Furthermore E pi(x,t) = I and
i ,

each p, is either identically zero or bounded from below by some c > 0. Let

* %* . * * .,. . - .* * .* .* * ..- ~ * ~ ~ ~ '~ ~ ~ ~ *~-* . * .. ... * , , ,. *, * *~ ., ~.. ~ ,

~* ~ ~ .** ~ ,
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P{bn(x,,) E A I x,M) = P i(X,0,)l&x)E)
U' 1

be the measure of the random field bn(x,).

(ii) The process (t') takes values 1, ..., M, where M does not depend on x. Let

pX. and P 'n denote the I and n-step transition probabilities of {0).
I ,J

(iii) There is no (not depending on x) such that P.: 0 is continuous in x and

strictly positive in x, i, j.

The third assumption implies that there is a uniform (in x) lower bound

on the geometric rate at which the measures induced by t' converge to the

invariant measure.

Discussion. In many applications, the distribution of the random field

bn(x,) is concentrated on a finite number of points which move continuously

with x, and which do not depend on t. Then we let these points be the ai(x), i

N, and then p,(x,t) - P(bn(xt) = ai(x) I x,t). In the above cited 'routing

example' bn might take values on 1 (if bn is an 'indicator' function) or values

a (x), a 2(x), if it is of the form a,(x)I, + a2(x)1 2 , where the I. are indicators of

events which depend on the arrivals, departures, routing realizations, etc., but

whose distributions depend on the current values of x, t. Both forms have

been used in the literature.

Proof of (A5.2ii). By (ii), (iii) above, (2.2b) holds [24]. In order to

simplify the notation, we set no - 1. The general proof is very similar. Let F

be a fixed compact set. Let c > 0 also be a lower bound for P',, x - F.

' ,

IN %
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Given 7 > 0, choose 6 > 0 such that Ix - yi ( B implies that Jai(x) - a1(Y) < 7,

pi(vt) 4 p,(x )exp Y for all t and PY ( PXexp 7 for all i, j, and x E F.

For fixed x, let (x,) satisfy the hypothesis of (A5.2ii). The transition

probability used to get the n In bn(xn n ) will be P,-. Thus (or
tn-1,j

whatever sequence replaces it below) generates { n}1 Then for t = to,

Etexp<,M, bIxj

= Etexp<a. bPJ E[cpob (nt) 1 .r-i'>xnI

= Ek, exp< <a bI(x ,t)E][ > e xp<cca )(xn) >p[(xl k)P ]i=l J~l k=l -n1,k]

Now, for all xn, tn-l' the last bracketed term is bounded above bv

(*) exp<c ,a,(x)>pj(x,k)Pt exp(Ic4 + 2)7.
j=l =1 ,k

Using (**) in (*) and continuing to iterate backwards to approximate all the xi

by x plus an 'error' yields the upper bound to (*) of

E exp [(< 4 bi(x, tx)> + n(a4 + 2)-'].

(A5.2ii) follows from this and the convergence in (2.2b).

I
1,

a-
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5.3. The Constrained Algorithm

We now outline the extension of Theorems 3.1 and 4.2 for the algorithm

(1.2), where G is a convex set which is the closure of its interior and its

boundary consists of a finite number of smooth (C2 ) sections. References

[18], [19] contain a detailed discussion of large deviations bounds (upper and

lower) for constrained algorithms, under constant gains a n = a > 0.

(Reference [18] is an abbreviated form of [191.) The technique used there is an

adaptation of the method of Freidlin [12] for the unconstrained case. In

order to simplify the development, we will use the assumptions of [181, [19],

and discuss the main questions concerning the adaptation of the proof there

to the present case. First, we define the mean projected dynamics for

Xn+1 = 7nG(X. + b(Xn,kn)).

The processes (X N.x), (X 0,N) and the various linear interpolations are all

defined as they were in (2.10), (2.11), (4.7) and (4.8). All neighborhoods and

sets used below are relative to G.

For x - G and v E R', define the 'projection' of v at x

nG(x,v) r lir [nG(x + AV) - x]/b
A-0

Define the set of outer normals to E0 at x:

n(x)- (y: for all y EG, <7, x-y> 0, 171 I).

, Note that [26, Lemma 4.6] nlG(x,v) equals v if x e Go (the interior of G) or x c

80G and suP7 (y,.(x),v> < 0 (i.e., where v points inward). In general, it equals

d'

*
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v - <v,7*>-Y if x E OG, sUPye,(x)<y,v> ) 0 and -" is the (a) maximizer.

Define H (x,ot) and L(x,S,t) by (2.7) and define the 'constrained'

L-functional by

Lo(X,8,t) = inf L (x,v,t).vGfl 0 (X.V)=8

For x 1 G or if the infimizing set is empty, set LG(x,0,t) = +. Then LG(x,Bt)

= L(x,B,t) if x E G o or if x E oG and <7,1> < 0 for all - Cn(x) (i.e., 0 points

to the interior of G). If x - aG and there is - - n(x) such that <y,13> > 0 (B

points 'out' of G), then LG(X,B,t) . The interesting case is when

n,, (y,0) ,_0; i.e., 0 points 'along the boundary.' In this case, there is a

true (nontrivial) minimization. Since L(x,S,t) is l.s.c. in 0 and L(x,$,t) - as

131- (under the assumptions to be used), the infima is attained. Define

=T

and the ODE for the projected mean dynamics

(5.11) X = nG(x,b(x)),

where b(.) is defined as in (A2.2).

One of the main difficulties as well as points of interest for the

constrained algorithm is that in many applications the escape of (X n ) from a

neighborhood of a stable point of (5.11) will be essentially along the

boundary, and when such neighborhoods are entered from the outside it is

often essentially along the boundary as well.

We will use the assumption

l •*
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A5.3. (i) The noise (k,) is exogenous.

(ii) b(x,k) is bounded (by K) and is Lipschitz continuous in x, uniform/y in t.

(iii) Partition b(x,k) into two parts, of dimension s and r - ,, resr. Define

coy t [b(x,t, 1) - b(x)] = ENn(X) = 3",(X) 1 1
n j= + L ,n(X) E'Nn(x)21 22)

Then either (a) (the non-degenerate case) im,n N.n(x) > 0 (in the sense of

positive definite matrices) or (the degenerate case)

(b) lrn XN,n(x) = 1rn E~n(x) = lir EN,(x) = 0 and lir E =N(x) > 0.
N,n N,n N N,n 22

Remark. A5.3(iii) is not particularly restrictive in applications. since

many algorithms divide naturally into components which are not directly

affected by noise and those which are in a 'non-degenerate' manner. It and
A5.300 were used in [18,19] to prove the I.s.c, of SGx(T,O), the action

functional for the constant gain a, = a > 0 case [19, Theorem 2]. In [18,191,

we required the set U(x) = (8: L(x,8) < -) (or its analog in the degenerate

case A5.3(iiib)) to be continuous in the Hausdorff topology, but, in fact, this

follows from A5.3(ii). The analog of this 'Hausdorff continuity' condition

for our case will always hold by A5.3(ii) wherever it is needed to adapting the

proofs in [18,19] to our an - 0 case.

Theorem 5.3. Let (5.8) have a unique solution for each initial condition in G.

Let 8 be an asymptotically stable point of (5.8) with domain of attraction A C G, and

let (Xn) enter (infinitely often w.p.l) a compact set D(8) C A. Assume (A2.1),

(A2.3), (A2.5), (A2.7)and (A5.3). Then X n'e6w.p.1.

.

"4

I'* ','- .
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If we assume in addition that given E > 0 there is N < ®  such thc,:

al/aN < 1 + E for all i ) N N , then

(5.12) limaNlog P{X n I D(e), some n ) NIIXN-6I)

- inf SG,(ott,O)
0: 1 (o) - el 4 B

0(t) J D(e) for sm t<am

Remark. Rate of convergence results for the constrained algorithms are not

available via the classical stochastic approximation method of 'local

linearization'. This makes estimates of the form (5.12) particularl important.

Remarks on the Proof. The argument cosely follows the lines of the

argument of Sections 3 and 4. In [19, Theorem 2], for the 'constant gain'

case, the l.s.c. of SG,x(T,O) was proved. Purely notational changes in the proof

there gives the l.s.c. in 0 of SG 0(o)(TO). Since flG(XV) = B implies 1- 1 8. the

compactness of (for compact F)

u (0 SG x(TO ) ' s)
xEF

is proved as it was in Lemma 3.1(ii). Note also that S'Gx(T,O) = 0 iff

LG(O(s),O(s),s) = 0 a.s. By the definition of LG and the fact that L(xB,s) = 0

iff 0 = b(x), LG(X,B,s) = 0 iff 1 = nG(x,b(x)). Therefore SGx(T,& 0 iff 0(s

=f OG((s),b(O(s)) a.s. These remarks give us the 'constrained case' analog of

Lemma 3.1. Then, if (A2.6) held, with SG,x replacing S', we would have our

convergence theorem.

Under the smoothness condition in (A5.3ii), the proof in [18,19] can be

adapted to get the necessary form of (A2.6), in much the same way that

Freidlin's proof in [12] was adapted to get the proof of Theorem 4.2.

'* . . .* %-. .'



6 APPENDIX 1. ON THE DIFFERENTI ABit-]IY OF- H(x,a) at*=0in (A 2 1)

%khen the state prcess {\n) is Mark, \. or Ahcn it ic .T),,

cf a Mlarko\ process (such as cur 'State-depcndcrnt nc, sc' l Cry

Satisf ing certain 'uniformls recurrent' conditris, it is pL*S 21-c t Pr

the diffe--rntiat'ilit\ of Ht x~a for a %%ide class of such pr- cc'c l

using analktical techniques and the characterizatiun cf H.,a a, t c

c-f thececnx aluc cf larget modulus of an cpcrat r a-, mc: 4

p r,- 2 - i n 24 Sce 1: CK.r detaV i n h,~ .,th a

in a general setting Whcex er. Kor man,. of the pc~C ~ ~i.t

studx 0f stoc),hastic ss stems the assumptvns required t\ this j~ A

rt h,-lu ks~ a %er\. common examnple. one Ma% cronsvicr thc A R\1 A

mdcl tc be disc:ussed1 belo\4

In this sectio n. we outline a method for pro'ing the d~ec~a

o f Vi' x~ a t a - 0 that is based on %kcll knovn 'lc,.el _- and 'lc\ c

large dc\ a3tions results and \% hich is general enough to C()\ er man. th~C

ncn-Mkarko% pro~cesses encountered in recursi'.e algorithms

In appi cations. A c *ould not Aant to be concerned A~ ith the ahstracti cx Cl'

result in this section But. the\ make it clear that the a-differentat-t:!iitx

assumption is not restrictise and can be treated in man\ different A3% ax

Work~ onix 'Aith the exogenous noise case and stationarx, and continuou,

qdeterministic1 random fields for simplicit of exposition Define the sampIC

occupation measure (oser the Borel sets 17

LS r.~
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an A iK -ri~ a I-- lit . mceaurc ,r R end,Ac I VA t Ih,,

j r c rgc I c T he I a r ijn M'. A 'umc t h c 1: r iA'

dc~ a n, t e rn a ic i fx d i h rug h, u

A6 I 'n:,'. it K' - , eJ ioi B In A ' M .o E

iifTP IL P % E 4,. -if I i

~ r. n n,. r t * i ~rcr ~i ac n i n nir.. hr '

A* E . xk :h. I =

1! i, tm Ah and i-62 that LI-.' , cucrgc, (\A p1 I:

Nk c nc-\A shov that (A6 I ) and A 6 2' impl\ the desired a-dif fecntiat-fl1t\

Then an example A il] he gix en. and the approach discussed

B. Varadlhan's theorem on the asx mptotic cxaluation of integrals [21] and thc

houndcdness and c'ontinuit\ of b x. )the follo& ing inequalit\ holds (%k p 1,

6], urn -log LT explca. ~~, sup f', w\-

O\ iousl\ Hrx.ai 4 H*(x~a) Since both functions are con, ex and Hx.O)

Hf .Oj - 0- H x.a) is a-differentiable at a -0 if H*(x,a) Is

ON N I
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Next note that

(6 21 Wx)a - sup sup [f<a., )y(dy) Ix(v)1

8 (.-CM fy',(dy)=)

= sgp[<x.t> - L*(x,8)].

'Ahcre

t*Cx,Bt= inf I (N
{vE, fyv(d>1=43}

Sincc lI*i\.01 = 0. B' is a suIdiffcrcntial of H*(x.a) at a 0 it

(63) H*;x.z) - <ctJ 3*/ )0. all a

But (6 3) holds iff L*(x,B*) - 0 since H* is the Legendrc transform of L*

Since H x. ) is convex, it is differentiable at a = 0 iff the sct of

subdiffercntials at a = 0 contains on[) one element. B% (A6 21. B* = d

is the unique value of B for which L*(x,$) - 0. Thus 1" - f.,(d\ ) is the

unique subdifferential. and the a-differentiability is proved. Note that B* =

b(x), as defined in (A2.2).

Discussion. We have phrased our requirement in terms of Hcx,ai at a =

0, but as shown above this is obviously equivalent to the uniquencs of tht B*

Satisfying L(x,B*) - 0. The reason for our choice is that in most of the 'Aork

on large deviations for dynamical systems 1)21, as well as the work

generalizing Cramer's original paper [161, (24], (25j, the differentiabilit. of

H(x,a) in a is taken as a fundamental assumption. As a consequence, this was

the condition that was typically verified for a given noise process See for

example Lemma 3 4 of [241

OP
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We illustrate the method with an example.

ExamPle. Suppose that b(x,.) is continuous, and that (k,) is a stationary

ARMA process with representation

(6.4) A0{tn + Al n_1  + + Adlt.dl =. B01,n + B ion. 1  + + Bd2 nd2,

% here (,i) is a sequence of zero mean, bounded, i. random variables For

simplicit., "c assume both k, and j take values in R r. It is also assumed that

the roots of dct( -o + A1s + + Ad Sdi) lie outside of the closed unit dis,:

Define S = (Rr)' (the space of infinite sequences with \,alues in Rri. and

consider the mapping F: S - S defined by (F( denotes the jth component)

F({s)); = b(x,p )

where (s, and (p,) are related by

AOPn + + Adlpn-dl " Bosn +.. + Bd2Snd2

We can metrize S in such a way that F is continuous (and in fact uni ,rml%

continuous on a subset A C S such that (,) C A wp. I). It is then relati\cl\

straightforward to show that (A6.1) and (A6.2) follow from the (so-called

'level 3') large deviations results for the process (;,) that are given in (23J,

under a suitable application of the 'contraction principle' (a 'continuous

mapping' technique) [21. Section 2). We omit all details here, since the, would

take us too far afield, and the techniques are known in large deviations

theory
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In general, if a given process ( , can be reprcscntcl ai a -rit ,rG k

transformation of a simpicr process [ ) for Ahih the appr}:,pr vc 'ic',- '

results exist. then we ma N obtain (A6 1 n) - d ( A.6. 'a the '.,t rt.

principle'. In the course of doing so, \c aK k \crif', A: I ,h If

there rcplaced b H (xa) of (6. 1

Although this approach maN seem abstract, it in fact rather easil, 'c,1

the a-differcntiabilits for a wide \arict\ of the nise prnic f :rr:

stochati: s\stems thcors . \khich often d'i, ha e such a rprccntltri, n

'.

U
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7 APPI NIX 2 PROOF OF THIiOR FM 5.1 FOR b (x.U =b,(x),
S(Al AR CASU

VA 1.i;itt the pr,) in 1-1 1,r thc c:(n~tant a EI 1 :3c I hc

Act; 1;r thc: ull I hcren) 5 1 usc a similar adlaptrihi Dct 1 n, (; ii

P'h a:. a nd(' 11 R h\ (,I supl a (~a' I ct I

ad n, I murall MUU ndclicndcnit scquencs of random .ariatlcs, c.-ich i i d

~i I. rh,- i ur)1rmls disrrihutcd on l0.1l, and the (;aussiar %kith mc.1n

I ~irrmn~ '~0 it po, i dcnr.c thc dcnr)it. 1I~ and ('..i

p r ~ n .1 !h, di ril ut i n ! u n l I

d I.

~u 1;rnI) p ic onl ci~h btundcd i x,a i set

lictl Inc (11 as (I t A 'as but using (1, x ict I d c ntL c i c)mp3 , t

set It t~I'~s rumn thc v,. ak. cont inuit N in 5 1 that1( is cont in Uul. n

*ER - (. 1 and tha t gilscn A E (0. 1 2. Gc't( is unitormis\ cont inuou,,

(,n I [. I - A( Define Fnix. -= 1 ), IF ( xi - G x (% n i

analogous ti % hat wkas done in Section 4, for x E Rr and n 0 N. dcl inc the

auxiliar% processes in C 1) (here also ~sis picccsAisc constant on 10.11 %k ith

intcr' als of constancsN [iA, iA + A) and %ke '.%rite t, - i n ii Ni
ni N

(7la) XN., X XN.,,+a [F NR Nx
ni n ni n( X Ti

n(- Xnlb- NxNx+an F(Xn?4) ap. XN'

(7 1c) XN .XN-x+ a F 0 X Nx x X, xN

O~i. I On c ON

(7A IN =~~. +a~( 1N P
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Ov. ing to the waN that G - 1 was constructed, the distributions of the

process defined by (7.1a) are equal to those of the (XNx, n ; N) process

defined in (2.9). (In fact, the discussion above indicates how the random

ficlds b( could be constructed.)

B% the definitions of G-1( ) and G- 1 (), the distributions of {XN 'x, n ) N)

)" ,N.x
and {Xo, n , n ) N) are the same, and we will work with the latter. Note that

the (Pn) no longer appears in (XN. n ) N). For 6 > 0 and large N,

P sX -s 2P sup Z ajp'
'N <.n m(t n+T) ' n met+T) N

4 exp - /2aNKlTO 2 ,

% here K is an upper bound for sup an/aN for large N.
N (n (m(tN4-T)

1he equivalence (in distribution) of the processes defined by (7.1b and

(7.1c) and (7-2) essentially allows us to prove the theorem by using a large

dcviations upper bound for (7.1c) -- which is 'smoothed', since Go,-'(v) is

x-continuous A large deviations upper bound of the type obtained in Section

4 can readilx be obtained for (7.1c), via the intermediary process (7.1d) (as in

Section 4) Henceforth x is confined to a compact set F

NeXt, let XNx( ), XNx() and X ,N(-) denote the piecewise linear

interpolations as in (2.11), but for the processes defined by (7.1a,c,d). Recall

part (d) of Theorem 4.2. The following set inclusion (4.12) was the key part

of the proof

(4 12 (d(XN,O) ( 5) C (d(0 4 'N,¢) ( }

-.-.
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Here, we work with the set inclusion (7.3) instead (see below for proof) for

appropriate 6 and 62'

(7.3) {d(XN'x,o) 4 6) C (d(X 0,N,O) 4 52} u N,

where P(N) 4 exp - Mo/aN with M0 - as o- 0 and not depending on 0 or x.

(For the general t-dependent bi, we use the conditional probability, as in

Theorem 4.2, and all upper bounds are uniform in w w.p.l.)

Define

HcI(x,ct) = H(x,ot) + K(t)a 2o 2/2

and the associated L and Sx functionals L. and S Owing to the added pn

in (7.1b), H is the proper H-functional for -) and for

enough to work with the inclusion (7.3) instead of (4.12) as in Theorem 4.2,

owing to the inequality (7.2) and the equivalence (in distribution) of the

processes r ,x()ad x
processes jX ) and XNX(.). Now, the same arguments that were used in|0

Theorem 4.2 now imply Assumption (A2.6), but with SX replaced by So0X By

[17, Lemma 1],

lim inf S'o,x(T,O) ) inf S'x(T,O ).

o-oe 0x 096

The last two sentences yield the theorem. Thus, only the set inclusion (7.3)

needs to be shown. This inclusion is proved in exactly the same way as (2.6)

in [171 is proved, with aj or aN replacing C, X N  replacing X, and X4'N
j N01 0

replacing XC,'4 , and we omit the details.

-.0 -If* .. * - .~ . .* .
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